AGV and AMR, the Key to Intelligent Automation

Revolutionising Industry: AGVs – Automated Guided Vehicles and AMR – Autonomous Mobile Robots

Today’s manufacturing and logistics landscape is undergoing a dynamic transformation thanks to advances in automation technologies. Two of these technologies, Automated Guided Vehicles (AGVs) and Autonomous Mobile Robots (AMR), have become the pillars of this transformation. They are crucial for automating various tasks in warehousing, manufacturing and logistics. Despite their similarities, understanding their differences is key to choosing the right automation solution.

Automated Guided Vehicles (AGVs): Precision and Efficiency on Fixed Routes

AGVs are robotic vehicles programmed to follow a fixed route within a facility. They typically rely on markers or wires in the ground, or use vision, magnets or lasers to follow a pre-set route. These routes are usually predetermined and only change if they are reprogrammed or reconfigured. This makes AGVs excellent for repetitive tasks and simple applications where the environment remains relatively constant, such as transporting goods along a production line.
The strength of AGVs lies in their ability to perform tasks with high precision and efficiency, providing a reliable and cost-effective solution for moving materials in a controlled environment. They minimise errors, reduce labour costs and improve safety by reducing accidents associated with manual handling.

   

Autonomous Mobile Robots (AMR): Intelligence and Adaptability in Dynamic Environments

While AGVs have been around for decades, Autonomous Mobile Robots are a more recent development in the field of automation. AMRs are characterised by their higher degree of autonomy, ability to navigate and make independent decisions based on their environment. Equipped with advanced sensors, cameras and artificial intelligence, AMRs can sense their environment, map their surroundings and dynamically redirect themselves if they encounter an obstacle.
AMRs are especially useful in complex and changing environments where routes must be adjusted frequently. This makes them highly adaptable and flexible, suitable for highly reactive and versatile applications. AMRs can also learn from their experiences, optimising their performance through machine learning algorithms.

AGV and AMR: Complementary Technologies for Industry 4.0

Choosing between an AGV and an AMR comes down to analysing your specific needs, assessing the nature of your operating environment and understanding the tasks you need to automate. An AMR might be ideal if the work requires high flexibility and adaptability, such as in a dynamic warehouse environment. Conversely, for structured and repetitive tasks in a controlled environment, an AGV would be more appropriate.

In reality, the choice is not always binary, and a combination of AGVs and AMR can be deployed to maximise the efficiency and effectiveness of your operations. They are not competing technologies, but complementary solutions designed to address different scenarios in the Industry 4.0 era.

Both AGVs and AMR significantly automate logistics and manufacturing processes, increasing productivity, reducing costs and improving safety opportunities. Understanding their unique strengths and potential applications is crucial for companies looking to harness the full potential of automation technologies in their operations.

Driving Intelligent Automation with Industrial IT Solutions

AMRs rely on a complex combination of sensors and decision making, complex route planning, machine learning and precise navigation. AGVs, on the other hand, focus on precise navigation along fixed routes, support for multitasking tasks and simplified maintenance and safety.

AIE510-ONX

Fanless AI system with NVIDIA® Jetson Orin™ NX (16GB, 100 TOPS), 8-core Arm Cortex-A78AE CPU, Ampere GPU with 32 Tensor Cores, LPDDR5 memory, expansion options, and Temp from -25°C to +60°C.

AIE100-ONA

Edge AI fanless system with NVIDIA® Jetson Orin™ Nano (up to 1024 Ampere cores and 32 Tensor Cores), up to 8GB on-board LPDDR5 memory, M.2 and PCIe expansion options, and operating temperature from -20°C to +50°C.

PE2101N

PE2101N

Edge AI fanless system with NVIDIA® Jetson Orin™ Nano (up to 1024 Ampere cores and 32 Tensor Cores), up to 8GB on-board LPDDR5 memory, M.2 and PCIe expansion options, and operating temperature from -20°C to +50°C.

NVIDIA Jetson™ AGX Orin™, Intelligent Edge AI System, Arm-based, Up to 275 TOPS, Dual LAN, Quad POE LAN, M.2 E, M.2 M, M.2 B, 9 to 36V, -25 to 55 °C

PE2100N

Rugged fanless intelligent edge AI system with NVIDIA Jetson™ AGX Orin™, up to 275 TOPS, dual LAN, quad PoE LAN, multiple expansion slots, wide power input (9-36VDC), and operating temperature from -25°C to 55°C.

 

PE1102N

Rugged Edge AI system with NVIDIA® Jetson™ Orin™ Nano™, supports up to four GMSL2 cameras, designed for demanding AI applications such as autonomous vehicles, robotics, industrial automation, and video surveillance.

PE1101N

PE1101N

Rugged fanless intelligent edge AI system with NVIDIA Jetson™ Orin™ NX or Orin™ Nano, up to 100 TOPS, GbE LAN, dual M.2 slots for expansion, wide power input (12-24VDC), and operating temperature from -25°C to 55°C.

 

PE1100N

PE1100N

Rugged fanless intelligent edge AI system with NVIDIA Jetson™ Orin™ NX or Orin™ Nano, up to 100 TOPS, GbE LAN, dual M.2 slots for expansion, wide power input (12-24VDC), and operating temperature from -25°C to 55°C.

EBS - PE1000N

PE1000N

Intelligent edge AI system with NVIDIA Jetson™ Nano™, TX2 NX, and Xavier™ NX, fanless design, dual LAN, HDMI, multiple M.2 slots, mini PCIe, dual SIM, built-in Wi-Fi & BT, LTE-ready, AEM support, and wide power input (12-24V).

 

Drive Your Industry into the Future with Advanced Automation Solutions

Industrial Automation: Solutions & Products

In the era of industrial digital transformation, automation has become a cornerstone for companies seeking efficiency, flexibility, and sustainability. At Matrix.es, we offer comprehensive industrial automation solutions designed to take your business to the next level.

What will you find in our solutions?

  • Industrial Process Automation: We implement robotic and automated systems to optimize production and reduce errors.
  • Predictive Maintenance: We use sensors and data analysis to anticipate machinery failures, minimizing downtime.
  • Intelligent Energy Management: We monitor and control energy consumption to reduce costs and meet sustainability standards.
  • Advanced Connectivity: 5G industrial networks and state-of-the-art sensors for fast and reliable communication.
  • High-Quality Products: Industrial PCs, Panel PCs, screens, sensors, and much more, designed for demanding industrial environments.

Benefits of Automation:

  • Process simplification and error reduction.
  • Optimization of operating costs and increased productivity.
  • Greater efficiency in resource management and sustainability.
  • Scalability and flexibility to adapt to market demands.

Key Features:

  • Intelligent control and real-time monitoring.
  • Modular and scalable equipment.
  • Reduction of human error and energy efficiency.
  • Interoperability and advanced connectivity.

At Matrix.es, we are committed to providing customized solutions that adapt to the specific needs of your company, ensuring reliability and compatibility in any environment.

Visit our Industrial Automation page for more information about the solutions and products we can offer you for your project: Industrial Automation

With Matrix Electrónica SECO increases its presence in the Iberian market

 

Arezzo, April 18, 2023 – SECO and Matrix Electrónica proudly announce their partnership agreement for the distribution of SECO product portfolio in the Iberian region. This strategic cooperation will facilitate customers’ access to SECO technology while receiving highly targeted support in the selection of the most suitable solution for their project.

With more than 30 years of experience in the distribution of high-tech products for the industrial market, Matrix Electrónica is a leader in providing electronic equipment, modules and components to developers, system integrators and manufacturers in Spain and Portugal. Its team of specialized R&D engineers can also provide customers with qualified technical support in the implementation of their design.

Through this partnership agreement, SECO now provides Matrix Electrónica access to a comprehensive portfolio of leading edge devices, from standard form factor Computer on Modules and Single Board Computers to ready-to-use HMI and fanless embedded computers. Matrix Electrónica’s know-how and proven expertise will bring added value to this cooperation, not only facilitating access to SECO technology but also delivering the most effective support. With a highly skilled R&D department and specialized vertical competencies, the company can provide customers in many industries with tailored solutions both in terms of hardware and accompanying operating system and BIOS.

Matrix Electrónica has proven to believe in SECO’s business proposition by establishing a strong, positive relationship since the beginning. Through common technical expertise and knowledge of vertical market needs, I truly believe we will achieve excellent results in a short time.” says Rocco GagliardiSales Manager Southern Europe of SECO, who adds “We are proud to work side by side with this team to improve the presence in the Iberian region, one of the main focuses of both SECO and Matrix.

The partnership of Matrix Electrónica and SECO to promote embedded processors in the Iberian market is a natural process, as Matrix has long been the leader in this sector in the market it covers and SECO is already the European leader in this product line. Now Iberian region users will enjoy the best service and the most advanced technology available today, with the guarantee of the top companies in this industry.” says José María Vilallonga Presas, chairman of Matrix Electrónica.

Source: seco.com

Tinker V and Tinker Board 3N

ASUS IoT announces Tinker V RISC-V SBC and Tinker Board 3N with Rockchip RK3568 SoC

ASUS IoT has added two new members to the Tinker board family with the SBC (Single Board Computer) Tinker V and Tinker Board 3N powered by the Renesas RZ/Five single-core RISC-V SoC and quad-core Arm Cortex-A55 processor. Rockchip RK3568 , respectively.

ASUS Tinker V RISC-V SBC

ASUS Tinker V is the  first SBC with a 64-bit RISC-V processor.
It has 1 Gbyte of DDR4 memory, a microSD card slot for storage, and optional support for a 16 GB eMMC module and SPI flash.

  • 2 Ethernet GbE
  • 1 micro USB
  • 1 micro USB (OTG)
  • 2 CAN Bus (6-pin terminal block)
  • 2 COM RS-232 (5-pin terminal block)
  • 20-pin GPIO header
  • JTAG debug pin header
  • DC power input connector

ASUS Tinker V is ideal for industrial IoT applications, specially designed to run Debian Linux and Yocto. With an ultra-compact size, it offers high power, full functionality and great connectivity, making it a perfect choice for a wide range of industrial IoT applications.

Tinker Board 3N

The 100 x 100mm board incorporates the Rockchip RK3568 , which integrates four ARM Cortex-A55 cores and a Mali-G52 GPU . LPDDR4X RAM memory, with 2 GB, 4 GB or 8 GB available in dual channel.

  • 32 GB and 64 GB eMMC options.
  • MicroSD card reader.
  • M.2 2032 E-Key for connecting Bluetooth/Wi-Fi modems
  • M.2 3042/3052 B-Key for 4G/5G modems.
  • SIM card slot
  • 2 HDMI USB 2.0 and USB 3.2 Gen1 Type-A ports
  • 1 USB 3.2 Gen1 Type-C connection
  • 3.5mm Audio
  • 2 RJ45 ports and a 40-pin GPIO header.
  • Compatible with Android 12 and Debian.

Do you need more info? Our team of specialists is available to help you find the best option for your project. Contact us.

 

Source: “ASUSIoT”

High-Endurance Low-Latency SD/microSD Cards

High-Endurance, Low-Latency SD/microSD Cards Built for Dashcams, DVRs Offer Over 109K Hours of Continuous Video Recording

 

 

 

 

 

 

 

ATP Electronics, the global leader in specialized storage and memory solutions, introduces its new 3D triple level cell (TLC) S750/S650 Series SD and microSD memory cards built for the rigors of non-stop video recording. They meet the high endurance, low latency, and built-to-last data storage requirements of dashcams and digital video recorders (DVRs), as well as surveillance systems, autonomous vehicles, and other write-intensive applications.

High Endurance Over 109K Hours1of Recording Time in Native TLC

Video evidence can prove critical in many scenarios; hence, it is very important for SD/microSD cards to record non-stop without compromising image quality and integrity. The S650 Series can record Full HD videos continuously up to 109,401 hours — far longer than similar cards marketed as “high endurance.” The S650 Series is based on 5K program/erase (P/E) cycles, which translate to 1.6X higher endurance than typical memory cards with 3K P/E cycles. The S750 Series, configured as pseudo single-level cell (pSLC) is based on 60K P/E cycles, while typical pSLC memory cards are rated for around 20K to 30K P/E cycles.

The following graph2 shows the endurance simulation result of ATP S650 128 GB microSD compared with other high-endurance branded cards of the same capacity, in full HD mode.

High Endurance Maximum Recording Hours: ATP S650 vs. Other High-Endurance Cards

High Endurance Maximum Recording Hours: ATP S650 vs. Other High-Endurance Cards

Notes:
Tested using 128 GB ATP S650 TLC card based on 13 Mbps (lowest bitrate of HD recording) in best-case/ideal scenario, with no other influencing factors.
2Information sourced by ATP from publicly available data. To record new data, the oldest data will be overwritten when the card is full. 1Mbps=1,000,000 bps

Low Latency: Ready to Record in <1 Second, Writes 50% Faster

After power on, drive recorders may have to wait a few seconds to be ready for recording. The time between the first read command and the first write command from host is the “response time.” ATP S650 and S750 Series cards take less than 1 second response time while normal cards may take 7 to 12 seconds based on real tests on a DVR at room temperature. While recording 16 MB data sequentially, ATP S650 cards take less than 0.1 second, saving 50% of writing time compared with consumer-rated cards and enabling high-speed backup without data loss.

Own HW/FW Design Features Offer Precise Reliability

As a true manufacturer with its own hardware/firmware capability, ATP can adjust to a variety of usages to fulfill customers’ specific application requirements and conditions. Based on customers’ applications, ATP does its best to meet the requirements by unique FW and HW design.

  • Auto-Read Calibration (ARC). Over time and with constant use, NAND flash memory cells degrade, causing voltage shifts that increase bit error rates (BER). When the normal Read Retry function is not enough to recover the errors, a more precise “Auto Read Calibration” (ARC) is applied to assure data integrity at extreme temperature or degraded NAND cells.
  • ATP Methodology for Advanced Card Analysis. ATP memory cards are IP67/IP57-certified and manufactured using System-in-Package (SiP) wafer/die process, making it difficult to do component analysis compared to SMT (surface- mount technology) process. ATP’s uniquely designed substrate and debug tool make this mission “possible.”
  1. ATP-Developed Hardware Design – Substrate with reserved testing pin is available for future component analysis.
  2. Solder Mask Removal by Laser – Precise and efficient method to remove solder mask so as to reach the reserved testing pins on the substrate.
  3. ATP’s Own Customized Debug Tool – This is connected to the HW reserved testing pin and then linked to the SW analysis system.

Specifications

 

→Industrial Memory Cards

 

Source: ATP Electronics Taiwan Inc.

ASUS Tinker Board – Single Board Computer (SBC) in an ultra-small form factor

ASUS Tinker Board SBC

Tinker Board is a Single Board Computer (SBC) in an ultra-small form factor that offers class-leading performance while leveraging outstanding mechanical compatibility. The Tinker Board offers creators and developers a reliable and extremely capable platform for building and tinkering their ideas into reality.

Leading Performance

With its powerful and modern quad-core ARM-based processor — the Rockchip RK3288 — Tinker Board offers significantly improved performance versus other popular SBC boards. To provide the flexibility needed for different builds and projects, Tinker Board features 2GB of LPDDR3 dual-channel memory. Tinker Board is also equipped with an SD 3.0 interface that offers significantly faster read and write speeds to expandable microSD cards used for the OS, applications and file storage.

Robust GPU Performance & Functionality

Featuring a powerful and energy efficient design, the Tinker board supports the next generation of graphics and GPU Compute API. Powered by the ARM-based Mali T764 GPU, its GPU enables a wide range of uses, including high-quality media playback, gaming, computer vision, gesture recognition, image processing and stabilization, photography, and much more. Multimedia enthusiasts will appreciate the H.264 video and audio encoders and H.265 compatibility, including HD and UHD* video.

HD Audio Quality

This is an improvement in key areas that many SBC cards lack, Tinker is equipped with an HD codec that supports up to 192kHz/24-bit audio. The audio jack can support both audio and microphone output, without an extension module.

Multiple IoT Connectivity Options

The Tinker Board features standard connectivity options, including a 40-pin GPIO interface that allows connection to a range of inputs from buttons, switches, sensors, LEDs, and more. Tinker Board is equipped with a DSI MIPI connection for displays and touch panels. The secondary CSI MIPI connection is for connection to compatible cameras that enable computer vision, and much more.

Tinker Board also features Gbit LAN for Internet and network connectivity. A dedicated bus resource designed for the LAN port ensures consistent Ethernet performance. The integrated Wi-Fi and Bluetooth controller on the Tinker Board is protected with a metal cover to ensure minimal interference and better radio performance. An integrated IPEX antenna connector allows for easy antenna replacement or upgrades.

Tinker Board also features a full-size HDMI output that avoids the use of adapters. Plus, it includes four USB 2.0 or 3.2 ports for extensive peripheral and accessory connectivity.

Improved DIY design

Creators will appreciate the visibility and clarity of the GPIO connector enhancements as they are color segmented for quick and easy recognition.

The Tinker Board’s PCB, dimensions, and topology meet a standard that makes it compatible with a multitude of chassis and accessories. The built-in MIPI headers also have colored tabs.

Tinker Board includes a heat sink, which helps to better work under heavy load or in hot environment.

TinkerOS ‧ Supported OS ‧ Applications

A Debian-based distribution ensures a smooth and functional experience, right out of the box. Whether you’re browsing the web, watching videos, or writing scripts, TinkerOS is a great starting point for your next project or build.

Furthermore, TinkerOS has been carefully designed to be extremely lightweight and responsive. Running on top of Debian 10 is an LXDE desktop environment. This GUI is specifically optimized for SBC. It also features Plug & Play NTFS support that allows easy access to Windows-based flash drives and external hard drives. The included web browser has also been carefully selected and optimized. It is based on Chromium and enables speed and stability along with various extensions. The ASUS team has helped enable browser hardware acceleration, which enables better web and video playback, including HD resolutions on YouTube.

TinkerOS also includes a number of popular apps that allow for easy programming and development. These include IDLE/Python as well as Squeak/Scratch.

Alongside TinkerOS and their Debian Linux Tinker Board offering they also support the Android operating system . This enables completely different usage scenarios ranging from media playback, gaming, and much more.

Tinker board is also working closely with a wide range of popular apps to enable support and optimize functionality.

 

RECEIVE OUR NEWSLETTER

* indicates required